The electric potential at any point as a function of distance $(x)$ in meter is given by $V = 5x^2 + 10x -9 \,(volt)$ Value of electric field at $x = 1$ is......$Vm^{-1}$
$-20$
$6$
$11$
$-23$
Equipotential surfaces are shown in figure. Then the electric field strength will be
Two parallel plates separated by a distance of $5\,mm$ are kept at a potential difference of $50\,V.$ A particle of mass ${10^{ - 15}}\,kg$ and charge ${10^{ - 11}}\,C$ enters in it with a velocity ${10^7}\,m/s.$ The acceleration of the particle will be
Two plates are $2\,cm$ apart, a potential difference of $10\;volt$ is applied between them, the electric field between the plates is.........$N/C$
$A, B$ and $C$ are three points in a uniform electric field. The electric potential is
In a region, the potential is represented by $V(x, y, z) = 6x - 8xy - 8y + 6yz$, where $V$ is in volts and $x, y, z$ are in metres. The electric force experienced by a charge of $2$ coulomb situated at point $( 1, 1, 1)$ is